Asymptotic random graph intuition for the biased connectivity game

نویسندگان

  • Heidi Gebauer
  • Tibor Szabó
چکیده

We study biased Maker/Breaker games on the edges of the complete graph, as introduced by Chvátal and Erdős. We show that Maker, occupying one edge in each of his turns, can build a spanning tree, even if Breaker occupies b ≤ (1 − o(1)) · n lnn edges in each turn. This improves a result of Beck, and is asymptotically best possible as witnessed by the Breaker-strategy of Chvátal and Erdős. We also give a strategy for Maker to occupy a graph with minimum degree c (where c = c(n) is a slowly growing function of n) while playing against a Breaker who takes b ≤ (1 − o(1)) · n ln n edges in each turn. This result improves earlier bounds by Krivelevich and Szabó. Both of our results support the surprising random graph intuition: the threshold bias is asymptotically the same for the game played by two “clever” players and the game played by two “random” players.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The eccentric connectivity index of bucket recursive trees

If $G$ is a connected graph with vertex set $V$, then the eccentric connectivity index of $G$, $xi^c(G)$, is defined as $sum_{vin V(G)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. In this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

متن کامل

Client-Waiter games on complete and random graphs

For a graph G, a monotone increasing graph property P and positive integer q, we define the Client-Waiter game to be a two-player game which runs as follows. In each turn Waiter is offering Client a subset of at least one and at most q + 1 unclaimed edges of G from which Client claims one, and the rest are claimed by Waiter. The game ends when all the edges have been claimed. If Client’s graph ...

متن کامل

Sharp thresholds for half-random games I

We study biased Maker-Breaker positional games between two players, one of whom is playing randomly against an opponent with an optimal strategy. In this paper we consider the scenario when Maker plays randomly and Breaker is “clever”, and determine the sharp threshold bias of classical graph games, such as connectivity, Hamiltonicity, and minimum degree-k. We treat the other case, that is when...

متن کامل

Positional games on random graphs

We introduce and study Maker/Breaker-type positional games on random graphs. Our main concern is to determine the threshold probability pF for the existence of Maker’s strategy to claim a member of F in the unbiased game played on the edges of random graph G(n, p), for various target families F of winning sets. More generally, for each probability above this threshold we study the smallest bias...

متن کامل

Random-Player Maker-Breaker games

In a (1 : b) Maker-Breaker game, one of the central questions is to find the maximal value of b that allows Maker to win the game (that is, the critical bias b∗). Erdős conjectured that the critical bias for many Maker-Breaker games played on the edge set of Kn is the same as if both players claim edges randomly. Indeed, in many Maker-Breaker games, “Erdős Paradigm” turned out to be true. There...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2009